Supplemental Materials

This appendix was provided by the authors to give readers additional information about this manuscript.

Ambient Melamine Exposure and Urinary Biomarkers of Early

Renal Injury

Chia-Fang Wu, Chiung-Yu Peng, Chia-Chu Liu, Wen-Yi Lin, Chih-Hong Pan, Ching-Mei Cheng, Hui-Ming Hsieh, Tusty-Jiuan Hsieh, Bai-Hsiun Chen, Ming-Tsang Wu

METHODS

Questionnaire

All eligible exposed and non-exposed workers were interviewed by well-trained researchers using a structured questionnaire face-to-face to collect detailed information about demographic characteristics, medical history, family history, their uses of substances (cigarette, alcohol, and betel quid), and occupational history. Body weight (kg) and body height (cm) were measured by professional examiners while participants stood in light street clothes. Body mass index (BMI (kg/m²)) was calculated with body weight divided by the square of body height. Family history of renal calculi or other kidney-related disease were considered to be present if any first-degree relative had a history of urolithiasis or other kidney-related disease.

Subjects were defined as alcohol drinkers, cigarette smokers or betel quid chewers if they had regularly consumed any alcoholic beverage ≥ 1 times per week, smoked ≥ 10 cigarettes per week, or chewed ≥ 1 betel quid per day for at least 6 months.¹ These three variables of substance uses from questionnaire have been validated by using different biomarkers in our previous study.² Occupational history, including job title, job duration, past working history, and use of personal protective equipment (e.g., dust masks), were also collected.

Quantification and method validation of melamine in air, urine, and serum samples

For the measurement of melamine in air sample, we modified the analytical method from Yassine *et al.*³ After weighing, all filters were placed in glass extraction vials and spiked with melamine isotopically labeled standards before extraction. Glass fibers were wetted by using 20 µl isopropanol and then were sonicated for 30 min with the mixture of 1 ml 2% (v/v) formic acid/acetonitrile (ACN). Subsequently, the extract was filtered through a 0.22 µm polyvinylidene fluoride (PVDF) syringeless filter device with polypropylene housing (Mini-UniprepTM Syringeless Filter; Whatman, Florham Park, NJ, USA). The analysis of melamine in blank samples followed the same procedure. Finally, the filtered samples were transferred into certified liquid chromatography (LC) vials for analysis by the method of liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) (Supplemental Figure 1).⁴

To extract melamine from serum samples, ${}^{13}C_3{}^{15}N_3$ -melamine was added as an internal standard to an aliquot of 300 µl serum samples. Then, 900 µl 2% phosphoric acid was added to the mixture and vortexed, and the mixture was centrifuged at 3,500 rpm for 10 minutes under room temperature. The aqueous supernatant was introduced into the solid-phase-extraction (SPE) cartridge (Bond Elut Plexa PCX 60 µm, 1ml, 30

mg) for analysis (Supplemental Figure 2).⁴ For the measurement of melamine and creatinine in urine samples, the detailed methods are described elsewhere.^{4,5} Briefly, the elute of 1 ml urine sample collected from an Oasis® MCX SPE cartridge (Waters Corp., Malford, MA, USA) was dried under nitrogen gas. Then, the residues were reconstituted in 200 μ l mobile phase and subjected into LC-MS/MS for analysis. The method of detection limit (MDL) in urine was 0.8 ng/ml (ppb), with any measurement below MDL treated as 0.4 ng/ml.^{4,5} Urinary creatinine was determined using spectrophotometry (U-2000; Hitachi, Tokyo, Japan) at a wavelength of 520 nm to measure the creatinine–picrate reaction. Urinary melamine concentration were expressed either ng/ml or μ g/mmole creatinine. In the present study, urinary melamine levels were detectable in all 39 (100%) urinary samples in 39 melamine workers and 39 (92.9%) out of 42 urinary samples in the non-exposed workers.

The method validations for air and serum samples are summarized in Table S2. The MDL was determined using a blank glass fiber sample or blank serum sample spiked with standards. For air samples, the MDL was 50 ng/ml; thus, MDL of air melamine concentration was converted to unit at ng/m³ as 46.30 ng/m³. For serum samples, the MDL was 1.33 ng/ml in serum.

Quantification and method validation of formaldehyde in air samples

The analytical method of formaldehyde was adopted from previous studies.^{6,7} Air samples were extracted with ACN and analyzed by the method of high-performance liquid chromatography with UV detection (HPLC-UV) (Jasco PU-2809, Japan/Varian UV-Vis detector, USA) in a gradient mode from 40% acetonitrile/60% water to 90% acetonitrile /10% water at a wavelength of 360 nm. The MDL was 0.23 μ g/m³ (Supplemental Table 2).

Analyses of renal injury biomarkers in urine

The quantitation of urinary microalbumin, NAG, and β 2-microglobulin have been described in detail elsewhere.⁵ The assay kits included microalbumin kit/ALB-TIA "SEIKEN" X1 (Denka Seiken, Tokyo, Japan), NAG assay kit (Diazyme Laboratory, Poway, CA), and N Latex β 2-microglobulin assay (Siemens Healthcare Diagnostics, Marburg, Germany). The MDLs were 0.96 ng/ml for microalbumin and 0.206 mg/l for β 2-microglobulin.⁵

Analysis of serum biochemistry and other examinations

All routine biochemistries such as liver function, cardiometabolic function, and renal function (BUN, creatinine, and uric acid) were measured in the central clinical laboratory of KMHKH. Both exposed and non-exposed workers underwent renal echo, whereas only exposed workers (melamine workers) had KUB radiography (Kidney, ureter, bladder X-ray) to detect any urolithiasis. All task forces were performed by health staff members who were blinded to this study design from KMHKH.

References

- 1. Liu CC, Huang SP, Wu WJ, Chou YH, Juo SH, Tsai LY, Huang CH, Wu MT: The impact of cigarette smoking, alcohol drinking and betel quid chewing on the risk of calcium urolithiasis. *Ann Epidemiol* 19: 539-545, 2009.
- Lin MY, Chen MC, Wu IC, Wu DC, Cheng YJ, Wu CC, Chai CY, Lee JM, Wu MT: Areca users in combination with tobacco and alcohol use are associated with younger age of diagnosed esophageal cancer in Taiwanese men. *PloS ONE* 6: e25347, 2011.
- 3. Yassine MM, Dabek-Zlotorzynska E, Celo V: Development of a hydrophilic interaction liquid chromatography-mass spectrometry method for detection and quantification of urea thermal decomposition by-products in emission from diesel engine employing selective catalytic reduction technology. *J Chromatogr A* 1229: 208-215, 2012.
- Wu CF, Liu CC, Chen BH, Huang SP, Lee HH, Chou YH, Wu WJ, Wu MT: Urinary melamine and adult urolithiasis in Taiwan. *Clin Chim Acta* 411: 184-189, 2010.
- Lin YT, Tsai MT, Chen YL, Cheng CM, Hung CC, Wu CF, Liu CC, Hsieh TJ, Shiea J, Chen BH, Wu MT: Can melamine levels in one-spot overnight urine specimens predict the total previous 24-hour melamine excretion level in school children? *Clin Chim Acta* 420: 128-133, 2013.
- 6. Katsuta I, Shimizu M, Yamaguchi T, Nakajima Y: Emission of volatile aldehydes from DAG-Rich and TAG-Rich oils with different degrees of unsaturation during Deep-Frying. *J Am Oil Chem Soc* 85: 513-519, 2008.
- US EPA. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, 2nd ed., TO-11A, EPA/625/R-96/010b. Environmental Protection Agency, Washington DC; 1999.
- 8. Srivastava AK, Gupta BN, Gaur JS, Bihari V: Clinical evaluation of workers handling melamine formaldehyde resin. *J Toxicol Clin Toxicol* 30: 677-681, 1992.
- Aalto-Korte K, Jolanki R, Estlander T: Formaldehyde-negative allergic contact dermatitis from melamine-formaldehyde resin. *Contact Dermatitis* 49: 194-196, 2003.
- Garcia Gavin J, Loureiro Martinez M, Fernandez-Redondo V, Seoane MJ, Toribio J: Contact allergic dermatitis from melamine formaldehyde resins in a patient with a negative patch-test reaction to formaldehyde. *Dermatitis* 19: E5-6, 2008.
- Niemelä R, Vainio H: Formaldehyde exposure in work and the general environment. Occurrence and possibilities for prevention. *Scand J Work environ Health* 7: 95-100, 1981.

- Marsh GM, Stone RA, Henderson VL: Lung cancer mortality among industrial workers exposed to formaldehyde: a Poisson regression analysis of the National Cancer Institute Study. *Am Ind Hyg Assoc J* 53: 681-691, 1992.
- 13. Isaksson M, Zimerson E, Bruze M: Occupational dermatoses in composite production. *J Occup Environ Med* 41: 261-266, 1999.
- 14. Lazarov A: Textile dermatitis in patients with contact sensitization in Israel: a 4-year prospective study. *J Eur Acad Dermatol Venereol* 18: 531-537, 2004.
- 15. Neghab M, Soltanzadeh A, Choobineh A: Respiratory morbidity induced by occupational inhalation exposure to formaldehyde. *Ind Health* 49: 89-94, 2011.
- 16. Lam CW, Lan L, Che X, Tam S, Wong SS, Chen Y, Jin J, Tao SH, Tang XM, Yuen KY, Tam PK: Diagnosis and spectrum of melamine-related renal disease: plausible mechanism of stone formation in humans. *Clin Chim Acta* 402: 150-155, 2009.
- Cheng WC, Chen SK, Lin TJ, Wang IJ, Kao YM, Shih DY: Determination of urine melamine by validated isotopic ultra-performance liquid chromatography/tandem mass spectrometry. *Rapid Commun Mass Spectrom* 23: 1776-1782, 2009.
- 18. Zhang M, Li S, Yu C, Liu G, Jia J, Lu C, He J, Ma Y, Zhu J, Yu C: Determination of melamine and cyanuric acid in human urine by a liquid chromatography tandem mass spectrometry. *J Chromatogr B Analyt Technol Biomed Life Sci* 878: 758-762, 2010.
- Gao J, Xu H, Kuang XY, Huang WY, Zhao NQ, Rao J, Qian QY, Cheng XY, Feng ZM, Xu J, Zhang X, Wang X: Follow-up results of children with melamine induced urolithiasis: a prospective observational cohort study. *World J Pediatr* 7: 232-239, 2011.
- 20. Liu CC, Wu CF, Chen BH, Huang SP, Goggins W, Lee HH, Chou YH, Wu WJ, Huang CH, Shiea J, Lee CH, Wu KY, Wu MT: Low exposure to melamine increases the risk of urolithiasis in adults. *Kidney Int* 80: 746-752, 2011.
- 21. Kong AP, Choi KC, Ho CS, Chan MH, Wong CK, Liu EK, Chu WC, Chow VC, Lau JT, Chan JC: Hong Kong Chinese school children with elevated urine melamine levels: a prospective follow up study. *BMC Public Health* 11: 354, 2011.
- 22. Panuwet P, Nguyen JV, Wade EL, D'Souza PE, Ryan PB, Barr DB: Quantification of melamine in human urine using cation-exchange based high performance liquid chromatography tandem mass spectrometry. *J Chromatogr B Analyt Technol Biomed Life Sci* 887-888: 48-54, 2012.
- 23. Wu CF, Hsieh TJ, Chen BH, Liu CC, Wu MT: A crossover study of noodle soup consumption in melamine-made bowls and total melamine excretion in urine. *JAMA Intern Med* 173: 317-319, 2013.

Legends

Supplemental Figure 1. Flowchart of study subjects.

Supplemental Figure 2. Signals of ion chromatograms for ambient melamine. a) Blank glass fibers; b) Glass fibers fortified with 1.0 ng of melamine standard; c) Melamine in air samples with the concentration of 6.09 ng/m³. (Upper and middle panels of chromatograms are melamine standard and lower panel of chromatogram is ${}^{13}C_{3}{}^{15}N_{3}$ -melamine internal standard (IS)).

Supplemental Figure 3. Signals of ion chromatograms for serum melamine. a) Negative control serum without fortified melamine standard; b) Control serum with fortified 2.0 ng/ml of melamine standard; c) Melamine in one serum sample of melamine worker. The melamine level from this sample was calculated to be 10.54 ng/ml. (Upper and middle panels of chromatograms are melamine standard and lower panel of chromatogram is ${}^{13}C_{3}{}^{15}N_{3}$ -melamine internal standard (IS)).

Supplemental Figure 4. The ambient distribution of different dust particle sizes (particulate matter (PM) 10, 2.5, and 1.0 μm) in a real-time status (one measurement every one minute) by portable laser aerosol spectrometers and dust monitors in one melamine manufacturing company (Factory A) during work from Monday to Friday. a) Monday; b) Tuesday; c) Wednesday; d) Thursday; e) Friday. (arrow indicates one worker smoked cigarettes close to the area dust monitor).

Supplemental Figure 5. Predicted temporal change of urinary melamine
concentrations by work sites. a) Predicted daily mean (± SE) difference of post-shift
and pre-shift of urinary melamine concentration by work sites from Monday to Friday;
b) Predicted daily mean (± SE) urinary melamine concentrations in the morning by
work sites from Monday, weekend, to the following Monday.

Supplemental Figure 6. Relationship between urinary melamine concentrations and early renal tubular injury markers in urine by work sites. a) Urinary melamine concentrations and NAG levels (n = 81); b) Urinary melamine concentrations and microalbumin levels (n = 81). Abbreviation: Cr = cratinine; NAG = N-acetyl β -D-glucosaminidase.

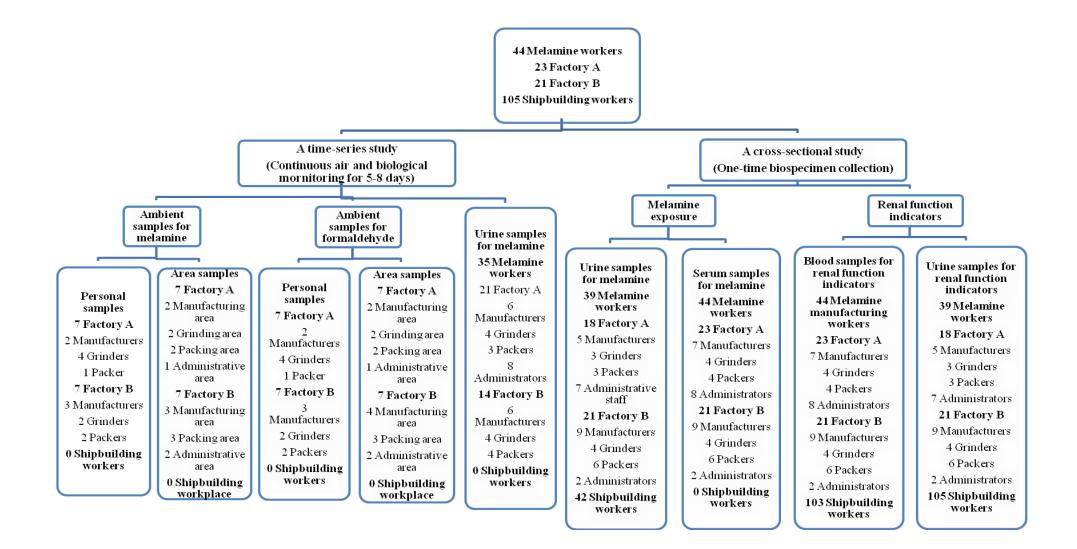
Supplemental Table 1. STROBE Statement—checklist of items that should be included in reports of observational studies

Supplemental Table 2. Accuracy and precision of melamine validation solutions spiked in air and serum samples (n = 5 each), and formaldehyde validation solutions spiked in air samples (n = 5).

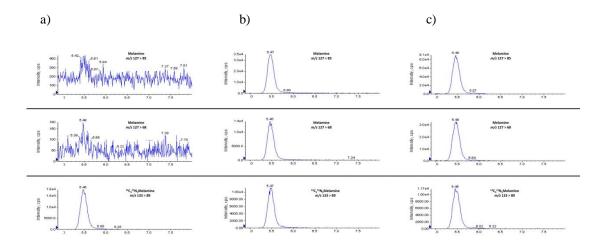
Supplemental Table 3. Daily averaged preshift and postshift urinary melamine concentration in melamine workers by work sites.

Supplemental Table 4. Daily averaged ambient personal and area melamine and formaldehyde concentrations ($\mu g/m^3$) in melamine workers by work sites.

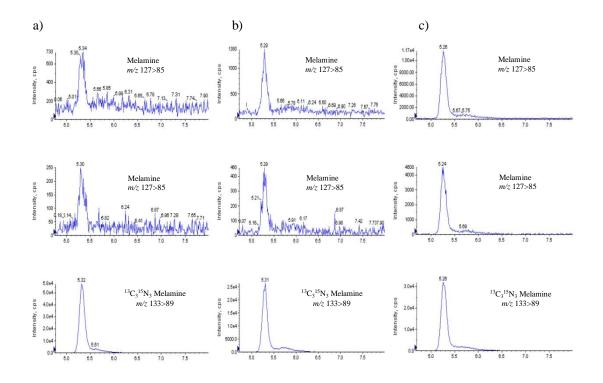
Supplemental Table 5. Daily averaged ambient concentrations of different dust particle sizes (particulate matter (PM) 10, 2.5, and 1.0 μ m) by portable laser aerosol spectrometers and dust monitors in one melamine manufacturing company (Factory A) during work.

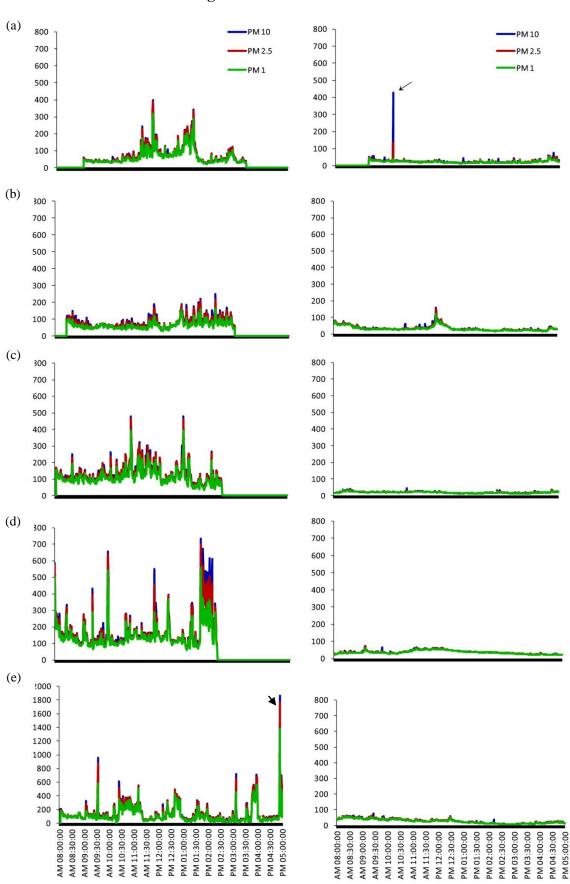

Supplemental Table 6. Daily variations of preshift and postshift urinary melamine concentrations concentrations in generalized linear mixed models.^a

Supplemental Table 7. Other clinical and laboratory data in melamine tableware manufacturing workers by work sites and their comparison group.

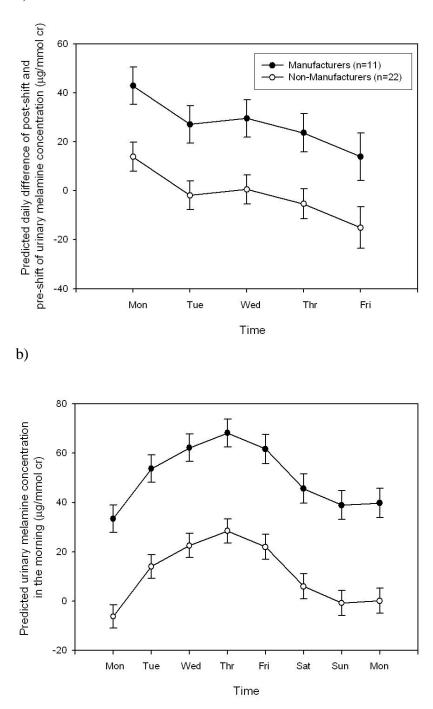

Supplemental Table 8. Relationship of urinary biomarkers of renal injury with urinary melamine levels or work sites after adjusting for hypertension in multiple linear regression models.

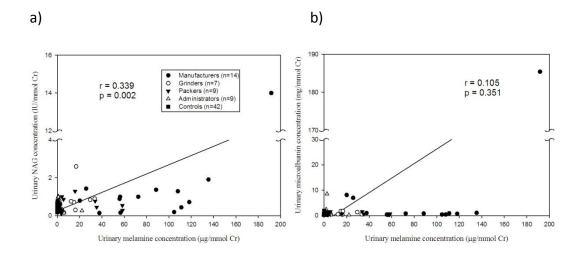
Supplemental Table 9. Summary of literature data about industry of melamine-formaldehyde resin related to occupational melamine exposure.


Supplemental Table 10. Summary of urinary melamine concentration variations in different populations from the literature.


Supplemental Figure 1. Flowchart of study

Supplemental Figure 2. Signals of ion chromatograms for ambient melamine. a) Blank glass fibers; b) Glass fibers fortified with 1.0 ng of melamine standard; c) Melamine in air samples with the concentration of 6.09 ng/m³. (Upper and middle panels of chromatograms are melamine standard and lower panel of chromatogram is ${}^{13}C_{3}{}^{15}N_{3}$ -melamine internal standard (IS)).


Supplemental Figure 3. Signals of ion chromatograms for serum melamine. a) Negative control serum without fortified melamine standard; b) Control serum with fortified 2.0 ng/ml of melamine standard; c) Melamine in one serum sample of melamine worker. The melamine level from this sample was calculated to be 10.54 ng/ml. (Upper and middle panels of chromatograms are melamine standard and lower panel of chromatogram is ${}^{13}C_{3}{}^{15}N_{3}$ -melamine internal standard (IS)).


Manufacturing area

Administrative area

Supplemental Figure 4. The ambient distribution of different dust particle sizes (particulate matter (PM) 10, 2.5, and 1.0 μ m) in a real-time status (one measurement every one minute) by portable laser aerosol spectrometers and dust monitors in one melamine manufacturing company (Factory A) during work from Monday to Friday. a) Monday; b) Tuesday; c) Wednesday; d) Thursday; e) Friday. (arrow indicates one worker smoked cigarettes close to the area dust monitor; arrow head indicates the highest ambient concentrations of PM 10 μ m (1861.8 μ g/m³), PM 2.5 μ m (1761.1 μ g/m³) and PM 1.0 μ m (1384.1 μ g/m³))

Supplemental Figure 5. Predicted temporal change of urinary melamine concentrations by work sites. a) Predicted daily mean (± SE) difference of post-shift and pre-shift of urinary melamine concentration by work sites from Monday to Friday;
b) Predicted daily mean (± SE) urinary melamine concentrations in the morning by work sites from Monday, weekend, to the following Monday.

Supplemental Figure 6. Spearman correlation between urinary melamine concentrations and early renal tubular injury markers in urine by work sites. a) Urinary melamine concentrations and NAG levels (n = 81); b) Urinary melamine concentrations and microalbumin levels (n = 81). Abbreviation: Cr = cratinine; NAG = N-acetyl β -D-glucosaminidase.

Supplemental Table 1. STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Checklis
Title and abstract	1	(a) Indicate the study's design with a commonly used	Yes
		term in the title or the abstract	
		(b) Provide in the abstract an informative and balanced	Yes
		summary of what was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Yes
Objectives	3	State specific objectives, including any prespecified hypotheses	Yes
Methods			
Study design	4	Present key elements of study design early in the paper	Yes
Setting	5	Describe the setting, locations, and relevant dates,	Yes
28		including periods of recruitment, exposure, follow-up, and data collection	
Participants	6	(<i>a</i>) Cohort study—Give the eligibility criteria, and the	Yes
	Ĭ	sources and methods of selection of participants.	105
		Describe methods of follow-up	
		Case-control study—Give the eligibility criteria, and the	
		sources and methods of case ascertainment and control	
		selection. Give the rationale for the choice of cases and	
		controls	
		Cross-sectional study—Give the eligibility criteria, and	
		the sources and methods of selection of participants	
		(b) Cohort study—For matched studies, give matching	N/A
		criteria and number of exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching	
		criteria and the number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors,	Yes
	-	potential confounders, and effect modifiers. Give	
		diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and	Yes
measurement	_	details of methods of assessment (measurement).	
		Describe comparability of assessment methods if there is	
		more than one group	
Bias	9	Describe any efforts to address potential sources of bias	Yes
Study size	10	Explain how the study size was arrived at	Yes
Quantitative variables	11	Explain how quantitative variables were handled in the	Yes
		analyses. If applicable, describe which groupings were chosen and why	100
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used	Yes
Statistical methods	12	to control for confounding	105
		(b) Describe any methods used to examine subgroups	Yes
		and interactions	105
		(c) Explain how missing data were addressed	Yes
		(d) Cohort study—If applicable, explain how loss to	Yes
		follow-up was addressed	105
		<i>Case-control study</i> —If applicable, explain how	
		matching of cases and controls was addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical	
		methods taking account of sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	N/A
		(e) Describe any sensitivity analyses	1N/A

Participants	13*	(a) Report numbers of individuals at each stage of	Yes
1		study—eg numbers potentially eligible, examined for	
		eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	Yes
		(c) Consider use of a flow diagram	Yes
Descriptive data	14*	(a) Give characteristics of study participants (eg	Yes
		demographic, clinical, social) and information on	
		exposures and potential confounders	
		(b) Indicate number of participants with missing data for	Yes
		each variable of interest	
		(c) <i>Cohort study</i> —Summarise follow-up time (eg,	N/A
		average and total amount)	
Outcome data	15*	Cohort study—Report numbers of outcome events or	N/A
		summary measures over time	
		Case-control study—Report numbers in each exposure	N/A
		category, or summary measures of exposure	
		Cross-sectional study—Report numbers of outcome	Yes
		events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable,	Yes
		confounder-adjusted estimates and their precision (eg,	
		95% confidence interval). Make clear which	
		confounders were adjusted for and why they were	
		included	
		(b) Report category boundaries when continuous	Yes
		variables were categorized	
		(c) If relevant, consider translating estimates of relative	Yes
0.1 1	15	risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups	Yes
<u> </u>		and interactions, and sensitivity analyses	
Discussion	10		V
Key results	18	Summarise key results with reference to study objectives	Yes
Limitations	19	Discuss limitations of the study, taking into account	Yes
		sources of potential bias or imprecision. Discuss both	
Interpretation	20	direction and magnitude of any potential bias Give a cautious overall interpretation of results	Yes
Interpretation	20	considering objectives, limitations, multiplicity of	168
		analyses, results from similar studies, and other relevant	
		evidence	
Generalisability	21	Discuss the generalisability (external validity) of the	Yes
Concransaonity	21	study results	105
Other information			
	1		
	2.2	Give the source of funding and the role of the funders	Yes
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original	Yes

50	iutions spikeu n	an samples	(n – c):				
Spiked	Day	1	Day 2	2	Interday		
concentration (ng/ml)	Accuracy (%) ^a	RSD (%) ^b	Accuracy (%)	RSD (%)	difference (%) ^c	LOQ	MDL
Melamine							
In serum							
2	100.4	3.8	102.5	6.2	1.99	2.00	1.33
5	91.8	2.5	91.0	2.6	0.87		
10	101.8	3.9	107.7	0.5	5.80		
In air						0.50	50.00
5	99.7	8.2	101.9	2.3	2.21		
50	100.2	7.3	101.0	2.0	0.76		
500	98.4	4.2	98.6	2.9	0.21		
Formaldehyde							
In air						2.9	8.0
15	90.4	3.1	92.5	2.0	2.36		
60	94.1	0.2	91.6	0.2	2.66		
300	95.9	0.3	99.5	0.3	3.75		

Supplemental Table 2. Accuracy and precision of melamine validation solutions spiked in air and serum samples (n = 5 each), and formaldehyde validation solutions spiked in air samples (n = 5).

Abbreviation: LOQ = Limit of quantitation; MDL = method of detection limit; RSD = relative standard deviation or precision; SD = standard deviation.

^aAccuracy = (mean observed concentration/standard concentration) \times 100

^bRSD = (SD/mean) \times 100.

^cInterday difference =[(mean of Day 2 – mean of Day 1) / mean of Day 1] \times 100

		М	onday	7		Tue	esday			Wedn	esday	7		Thu	rsday			Fri	day		Sa	aturday	:	Sunday	Ν	Aonday
Mean ± SE	Ν	AM	N	PM	Ν	AM	Ν	PM	N	AM	N	PM	Ν	AM	N	PM	Ν	AM	Ν	PM	Ν	AM	Ν	AM	Ν	AM
Without creatini	ine co	rrection (i	ng/ml)																							
Manufacturers	12	112.2 ± 25.1	11	1321.3 ± 547.6	12	739.3 ± 175.8	12	1065.5 ± 318.7	12	802.9 ± 197.6	12	1116.2 ± 247.6	11	753.2 ± 118.8	10	793.1 ± 209.7	11	752.2 ± 178.2	5	534.2 ± 196.0	11	404.7 ± 104.8	11	181.9 ± 37.6	11	245.4 ± 83.9
Grinders	8	111.4 ± 41.2	8	159.8 ± 44.4	8	105.0 ± 28.7	8	174.3 ± 40.9	8	205.0 ± 81.1	8	290.7 ± 71.6	7	190.9 ± 41.2	7	258.7 ± 60.5	7	160.8 ± 37.8	2	236.9 ± 47.3	6	110.3 ± 50.5	6	65.8 ± 20.0	6	49.2 ± 8.5
Packers	7	36.4 ± 13.4	7	134.0 ± 31.6	7	175.1 ± 89.3	7	310.0 ± 99.6	6	432.8 ± 229.4	7	267.6 ± 78.9	7	381.5 ± 205.2	7	310.5 ± 94.7	5	104.3 ± 44.4	3	90.8 ± 20.4	6	77.6 ± 21.6	6	130.3 ± 108.6	6	46.1 ± 13.1
Administrators	8	18.5 ± 5.9	8	69.4 ± 29.2	8	34.3 ± 10.6	8	66.0 ± 24.2	8	44.3 ± 11.6	8	41.2 ± 13.8	8	39.5 ± 12.7	7	38.9 ± 12.7	7	23.7 ± 6.5	5	20.4 ± 7.0	7	43.1 ± 20.4	7	80.4 ± 43.0	7	88.3 ± 34.3
With creatinine	corre	ction (µg/i	nmol)																							
Manufacturers	12	11.5 ± 2.0	11	74.6 ± 17.2	12	61.3 ± 9.8	12	80.0 ± 10.9	12	65.1 ± 8.3	12	97.0 ± 17.6	11	89.0 ± 15.3	10	112.7 ± 18.0	11	83.8 ± 16.5	5	51.9 ± 11.7	11	44.9 ± 11.1	11	19.0 ± 3.5	11	27.5 ± 9.3
Grinders	8	8.9 ± 1.8	8	14.0 ± 1.6	8	11.5 ± 1.7	8	15.3 ± 3.3	8	21.5 ± 6.9	8	25.6 ± 3.3	7	25.0 ± 7.1	7	18.6 ± 2.6	7	16.3 ± 3.1	2	16.0 ± 1.7	6	9.5 ± 2.3	6	8.2 ± 1.6	6	6.9 ± 1.9
Packers	7	3.8 ± 0.6	7	7.8 ± 1.8	7	15.2 ± 5.7	7	16.7 ± 4.0	6	42.7 ± 19.5	7	30.0 ± 14.0	7	27.2 ± 14.6	7	21.9 ± 6.3	5	12.3 ± 3.8	3	6.1 ± 0.8	6	8.4 ± 2.1	6	16.3 ± 12.4	6	5.8 ± 0.9
Administratiors	8	1.7 ± 0.8	8	4.9 ± 2.0	8	3.0 ± 0.7	8	5.7 ± 2.3	8	3.0 ± 0.6	8	3.6 ± 0.6	8	3.1 ± 0.7	7	4.1 ± 1.2	7	1.9 ± 0.5	5	2.4 ± 0.9	7	3.4 ± 0.9	7	9.7 ± 6.9	7	10.3 ± 4.8

Supplemental Table 3. Daily averaged preshift and postshift urinary melamine concentration in melamine workers by work sites.

Abbreviation: SE = Standard error; AM = morning (preshift); PM = afternoon (postshift).

		Monday		Tuesday	۷	Vednesday		Thursday		Friday]	Five days
	Ν	Mean ± SE	Ν	Mean ± SE	Ν	Mean ± SE	Ν	Mean ± SE	Ν	Mean ± SE	Ν	Mean ± SE
Melamine												
Personal samplers												
Manufacturers	5	131.6 ± 64.5	3	15.1 ± 4.5	4	39.1 ± 30.3	5	93.2 ± 54.5	1	426.4	18	97.3 ± 31.4
Grinders	6	14.4 ± 8.4	5	9.1 ± 5.1	5	48.5 ± 57.8	6	115.5 ± 51.0	4	32.6 ± 13.5	26	46.1 ± 14.6
Packers	3	12.0 ± 7.9	3	12.3 ± 5.3	0		3	4.2 ± 1.6	1	2.3	10	8.8 ± 2.9
Area samplers												
Manufacturing area	5	23.2 ± 10.2	4	2.7 ± 1.4	5	21.0 ± 13.0	4	16.1 ± 13.8	0		18	16.5 ± 5.4
Grinding area	1	2.7	1	12.5	2	10.1 ± 5.9	0		0		4	8.9 ± 3.2
Packing area	4	2.7 ± 2.2	5	1.6 ± 0.6	4	1.1 ± 0.4	3	1.3 ± 0.2	1	2.6	17	1.8 ± 0.5
Administrative area	2	0.3 ± 0.1	2	0.3 ± 0.0	2	1.2 ± 0.9	1	0.4	1	0.5	8	0.6 ± 0.2
Formaldehyde												
Personal samplers												
Manufacturers	5	229.0 ± 18.5	3	184.6 ± 20.7	5	193.5 ± 11.5	5	212.3 ± 5.3	1	208.8	19	207.2 ± 7.2
Grinders	6	139.3 ± 37.0	5	144.9 ± 32.4	5	113.7 ± 31.6	6	159.3 ± 33.4	4	141.1 ± 20.6	26	140.3 ± 13.9
Packers	2	74.6 ± 34.7	3	44.2 ± 12.7	0	-	3	82.4 ± 52.3	1	21.6	9	61.2 ± 18.2
Area samplers												
Manufacturing area	5	81.2 ± 14.5	4	71.9 ± 18.0	5	109.7 ± 31.1	4	171.5 ± 34.3	0		18	107.1 ± 14.7
Grinding area	1	76.1	1	77.0	2	55.2 ± 2.6	0	-	0		4	65.9 ± 6.3
Packing area	5	31.3 ± 12.7	5	36.5 ± 9.2	5	40.6 ± 6.8	3	45.8 ± 2.1	1	27.6	19	37.2 ± 4.3
Administrative area	2	24.4 ± 18.0	3	30.6 ± 9.6	2	14.7 ± 2.5	1	26.8	1	16.5	9	23.7 ± 4.7

Supplemental Table 4. Daily averaged ambient personal and area melamine and formaldehyde concentrations (µg/m³) in melamine workers by work sites.

Abbreviation: SE = Standard error.

Supplemental Table 5. Daily averaged ambient concentrations of different dust particle sizes (particulate matter (PM) 10, 2.5, and 1.0 µm) by portable laser aerosol spectrometers and dust monitors in one melamine manufacturing company (Factory A) during work.

Dust size			Manufac	turing area				Adminis	trative are		p-value
(µg/m ³)	Ν	≤100	>100-≤ 200	> 200	Mean±SD (Min, Median, Max)	Ν	≤100	>100-≤200	> 200	Mean±SD (Min, Median, Max)	
Monday											
PM 10	381	300	67	14	75.5±53.5 (23.9, 55.6, 398.5)	476	475	0	1	25.7±20.1 (12.9, 23.2, 426.6)	< 0.000
PM 2.5		304	63	14	73.9 ± 52.2 (23.8, 54.4, 391.3)		475	0	1	24.4 ± 8.7 (12.9, 22.6, 134.9)	< 0.000
PM 1.0		324	50	7	(23.8, 34.4, 391.3) 65.1 ± 44.0 (20.5, 47.4, 320.5)		476	0	0	(12.9, 22.0, 134.9) 22.5 ± 5.9 (12.6, 21.5, 51.5)	< 0.000
Tuesday					(,, e,)					(,,)	
PM 10	389	303	83	3	81.0±32.7 (31.6, 72.4, 248.7)	569	566	3	0	35.5±16.6 (18.4, 30.2, 156.7)	< 0.000
PM 2.5		316	71	2	77.4±30.0		566	3	0	34.8±15.6	< 0.000
PM 1.0		359	30	0	(31.6, 70.6, 217.1) 65.5 ± 22.1		567	2	0	(18.4, 29.9, 150.5) 32.5 ± 13.9 (17.5, 29.4, 122.2)	< 0.000
W					(30.9, 61.1, 164.8)					(17.5, 28.4, 122.2)	
Wednesday PM 10	386	110	237	39	132.8±60.1	576	576	0	0	20.2±5.0	< 0.000
PM 2.5		119	228	39	(39.7, 118.6, 479.2) 128.7±57.0		576	0	0	(12.6, 19.9, 67.5) 19.9±4.4	< 0.000
PM 1.0		176	190	20	(39.1, 116.0, 466.4) 112.4±47.1		576	0	0	(12.6, 19.8, 36.9) 19.0±4.0	< 0.000
					(34.5, 103.6, 394.8)					(12.0, 19.1, 32.2)	
Thursday											
PM 10	389	41	258	90	180.5±112.7 (62.5, 138.4, 732.2)	570	570	0	0	36.6±10.9 (12.0, 35.4, 73.9)	< 0.000
PM 2.5		51	251	87	172.6±100.6 (62.2, 134.4, 695.5)		570	0	0	36.3±10.7 (12.0, 35.2, 70.4)	< 0.000
PM 1.0		92	226	71	149.7±75.8 (59.1, 126.3, 556.7)		570	0	0	34.9±10.3 (11.8, 33.8, 59.6)	< 0.000
Friday											
PM 10	541	303	132	106	136.7±146.8 (15.8, 91.7, 1861.8)	574	574	0	0	28.6±14.7 (6.8, 27.2, 75.3)	< 0.000
PM 2.5		312	128	101	131.9 ± 140.2 (14.5, 88.4, 1761.1)		574	0	0	28.2 ± 14.4 (6.8, 26.9, 63.0)	< 0.000
PM 1.0		348	111	82	112.6±114.6		574	0	0	26.2±13.3	< 0.000
					(11.5, 77.4, 1384.1)					(6.5, 25.7, 58.5)	
Five days PM 10	2086	1057	777	252	121.1±102.2	2765	2761	3	1	29.6±15.6	< 0.000
PM 2.5		1102	741	243	(15.8, 98.3, 1861.8) 116.7±95.9		2761	3	1	(6.8, 26.4, 426.6) 29.0±13.2	< 0.000
PM 1.0		1299	607	180	(14.5, 95.4, 1761.1) 100.6 ± 77.4 (11.5, 84.4, 1384.1)		2763	2	0	(6.8, 26.2, 150.5) 27.3±12.0 (6.5, 24.7, 122.2)	< 0.000

Abbreviation: SD = Standard deviation.

Variables	β	SE	95% CI	p-value
a) Model 1 ^b				
Work sites				
Non- manufacturers	1	-	-	-
Manufacturers	28.99	8.51	12.31~45.66	0.001
Sampling day				
Mon	1	-	-	-
Tue	-15.73	6.56	-28.58 ~ -2.87	0.016
Wed	-13.27	6.61	-26.2 ~ -0.31	0.045
Thu	-19.22	6.79	-32.54 ~ -5.90	0.005
Fri	-28.91	9.02	-46.59 ~ -11.22	0.001
b) Model 2 ^b				
Air melamine ($\mu g/m^3$)	0.09	0.04	0.01 ~ 0.17	0.034
Sampling day				
Mon	1	-	-	-
Tue	-9.40	5.15	-19.48 ~ 0.69	0.068
Wed	-0.23	5.51	-11.03 ~ 10.56	0.966
Thu	-12.60	4.96	-22.32 ~ -2.87	0.011
Fri	-22.03	8.84	-39.36 ~ -4.70	0.013
c) Model 3 ^b				
Air formaldehyde	0.03	0.06	-0.10 ~ 0.15	0.658
$(\mu g/m^3)$				
Sampling day				
Mon	1	-	-	-
Tue	-13.63	6.33	-26.03 ~ -1.22	0.031
Wed	-6.59	6.51	-19.35 ~ 6.16	0.311
Thu	-15.37	6.14	-27.40 ~ -3.34	0.012
Fri	-20.04	10.53	-40.69 ~ 0.60	0.057
d) Model 4 ^c				
Work sites				
Non-manufacturers	1	-	-	-
Manufacturers	39.66	5.47	28.93 ~ 50.38	< 0.001
Day				
Mon	1	-	-	-

Supplemental Table 6. Daily variations of preshift and postshift urinary melamine concentrations concentrations in generalized linear mixed models.^a

Tue	20.25	5.92	8.65 ~ 31.86	0.001
Wed	28.75	5.97	17.06 ~ 40.45	< 0.001
Thu	34.68	6.02	22.89 ~ 46.48	< 0.001
Fri	28.19	6.18	16.07 ~ 40.31	< 0.001
Sat	12.15	6.18	0.03 ~ 24.26	0.049
Sun	5.47	6.18	-6.65 ~ 17.58	0.377
Mon	6.33	6.18	-5.79 ~ 18.44	0.306

Abbreviation: CI = Confidence interval; SE = standard error;

^aAdjusting for age, sex, educational level, BMI, smoking status, and serum uric acid.

^bDependent variable: Daily difference of preshift and postshift urinary melamine concentrations (postshift - preshift).

^cDependent variable: Daily preshift urinary melamine concentrations.

		Exposed wor	kers (N = 44)		Non-exposed workers	<i>p</i> -value ^a	<i>p</i> -value ^b
Variables	Manufacturers	Grinders	Packers	Administrators	Controls	(Overall)	(Manufacturers vs. controls)
Ν	16	8	10	10	105		
			Mean ± SD (Me	edian, IQR)			
Height (cm)	166.2 ± 7.2	162.3 ± 6.5	156.0 ± 9.5	167.0 ± 10.6	168.1 ± 6.6	0.010	0.307
	(165.0, 159.6-171.4)	(161.0, 158.3-167.8)	(157.0, 153.6-165.3)	(164.0, 160.3-175.5)	(168.6, 163.3-172.9)		
Weight (kg)	63.9 ± 13.1	59.2 ± 6.5	57.8 ± 9.7	72.4 ± 28.2	67.2 ± 9.5	0.022	0.665
	(67.9, 51.9-72.3)	(59.4, 54.4-64.8)	(56.9, 50.1-65.9)	(62, 53.6-84.8)	(67.6, 60.2-73.6)		
Waist (cm)	79.2 ± 9.8	75.4 ± 5.6	76.2 ± 5.5	84.9 ± 18.5	81.5 ± 11.3	0.011	0.411
	(81.5, 76.3-85.8)	(75.5, 70.3-80.3)	(77.0, 70.8-80.8)	(78.0, 75.3-92.3)	(82.0, 78.0-88.0)		
Hip (cm)	92.1 ± 6.7	93.5 ± 6.4	92.3 ± 5.0	98.3 ± 10.4	93.5 ± 14.0	0.141	0.092
	(93.5, 89.0-96.5)	(92.5, 90.5-93.8)	(93.5, 87.3-96.3)	(95.0, 91.0-102.0)	(95.0, 92.0-99.0)		
Blood Pressure (mmHg)							
Systolic blood pressure	124.3 ± 16.3	117.0 ± 18.0	109.7 ± 10.0	120.5 ± 12.5	132.5 ± 14.2	-0.0001	0.072
	(123.0, 112.8-138.3)	(115.0, 106.3-120.5)	(110.5, 101.8-119.3)	(119.5, 109.8-132.8)	(132.0, 123.0-139.0)	< 0.0001	0.073
Diastolic blood pressure	74.6 ± 11.2	68.8 ± 12.1	67.2 ± 8.5	77.0 ± 11.4	84.6 ± 11.8	< 0.0001	0.003
	(72.0, 63.0-84.0)	(64.5, 60.3-76.8)	(69.5, 58.8-74.3)	(74.0, 67.3-85.8)	(86.0, 74.5-92.0)		
				N (%)			
Hypertension (> 140/90							
mmHg)	2 (12 5)	1 (12.5)	0	1 (10.0)	22 (20 5)	0.004	0.221
Abnormal	2 (12.5)	1 (12.5)	0	1 (10.0)	32 (30.5)	0.094	0.231
Normal	14 (87.5)	7 (87.5)	10 (100.0)	9 (90.0)	73 (69.5)		

Supplemental Table 7. Other clinical and laboratory data in melamine tableware manufacturing workers by work sites and their comparison group.

Liver function

GOT (IU/L)	23.7 ± 6.1	38.8 ± 43.2	21.0 ± 5.6	25.3 ± 10.1	26.4 ± 9.5	0.505	0.402
	(23.5, 18.5-27.0)	(24.0, 19.5-31.3)	(22.5, 17.3-25.5)	(22.5, 18.8-28.0)	(25.0, 20.0-30.0)		
GPT (IU/L)	21.8 ± 12.4	33.6 ± 36.1	17.3 ± 7.0	22.5 ± 18.5	28.2 ± 17.6	0.088	0.131
	(20.5, 14.5-25.5)	(22.0, 15.0-32.8)	(15.5, 11.8-23.0)	(18.5, 9.8-24.8)	(24.0, 16.0-36.0)		
r-GT (IU/L)	36.2 ± 23.2	98.9 ± 187.8	18.6 ± 4.0	30.3 ± 21.5	35.4 ± 32.4	0.046	0.640
	(31.0, 18.8-45.8)	(25.5, 17.5-80.0)	(20.5, 16.5-21.0)	(18.5, 13.0-56.5)	(28.0, 20.0-38.3)		
Cadiometabolic				-			
indicators							
Glu(Ac) (mg/dL)	106.9 ± 61.7	84.1 ± 4.9	84.3 ± 10.7	90.5 ± 15.9	100.5 ± 34.3	0.006	0.717
	(89.0, 87.3-97.8)	(84.5, 80.5-88.3)	(82.0, 79.0-88.0)	(90.0, 78.3-96.3)	(93.0, 85.0-101.0)		
T-cholesterol (mg/dL)	187.4 ± 44.9	162.8 ± 20.0	194.0 ± 35.8	183.2 ± 25.8	204.8 ± 36.4	0.004	0.068
	(180.5, 154.5-216.5)	(158.5, 150.5-183.3)	(196.0, 168.0-221.0)	(186.0, 164.5-201.8)	(204.0, 182.0-227.0)		
Triglyceride (mg/dL)	120.1 ± 109.8	120.0 ± 140.2	90.0 ± 42.5	123.1 ± 106.6	119.1 ± 68.3	0.253	0.330
	(90.0, 58.3-141.3)	(76.5, 52.3-101.8)	(82.0, 56.0-108.5)	(72.0, 56.0-167.5)	(102.0, 80.0-147.0)		
Fibrinogen (mg/dL)	258.4 ± 41.4	286.6 ± 75.4	281.6 ± 58.1	281.3 ± 41.7	293.0 ± 62.5	0.300	0.033
	(266.2, 221.6-292.5)	(285.9, 212.0-352.2)	(263.8, 246.5-306.5)	(288.4, 262.6-299.7)	(293.8, 246.5-323.9)		
HSCRP (mg/dL)	0.1 ± 0.1	0.1 ± 0.1	0.1 ± 0.1	0.1 ± 0.1	0.1 ± 0.1	< 0.0001	< 0.000
	(0.1, 0.0-0.1)	(0.1, 0.0-0.1)	(0.1, 0.0-0.1)	(0.1, 0.0-0.2)	(0.1, 0.0-0.1)		
Lung function							
FVC (L)	2.9 ± 0.5	2.8 ± 0.8	2.8 ± 1.1	3.0 ± 0.7	3.5 ± 0.6	< 0.0001	0.001
	(2.9, 2.6-3.4)	(2.7, 2.2-3.5)	(2.4, 2.2-3.1)	(2.9, 2.5-3.3)	(3.4, 3.0-3.9)		
FVC (%)	78.8 ± 14.9	81.1 ± 19.6	80.3 ± 10.8	74.6 ± 9.0	89.8 ± 12.6	< 0.0001	0.002
	(78.5, 68.2-82.7)	(80.0, 73.9-83.8)	(81.2, 70.0-91.3)	(77.4, 69.4-81.4)	(87.0, 81.5-99.2)		
FEV1 (L)	2.8 ± 0.5	2.6 ± 0.8	2.7 ± 1.1	2.7 ± 0.7	3.3 ± 0.6	< 0.0001	0.007
	(2.8, 2.5-3.4)	(2.7, 1.7-3.2)	(2.3, 2.1-2.9)	(2.7, 2.3-2.9)	(3.2, 2.9-3.5)		

FEV1/FVC (%)	96.1 ± 5.4	92.1 ± 7.6	95.8 ± 4.4	92.9 ± 9.3	93.2 ± 5.7	0.195	0.032
	(98.8, 92.0-100.0)	(92.5, 86.1-99.7)	(96.7, 92.4-100.0)	(96.9, 87.8-100.0)	(94.0, 89.5-97.8)		
Blood routine WBC							
WBC (10 ³ /uL)	6.4 ± 1.6	6.5 ± 1.5	7.0 ± 2.1	7.6 ± 2.0	6.1 ± 1.4	0.094	0.742
	(6.0, 5.3-6.5)	(6.1, 5.1-7.9)	(6.7, 5.1-8.5)	(7.0, 6.4-8.8)	(5.8, 5.2-6.9)		
RBC (10 ⁶ /uL)	4.9 ± 0.5	4.6 ± 0.4	4.9 ± 0.5	5.0 ± 0.7	5.2 ± 0.5	0.005	0.032
	(4.8, 4.7-5.4)	(4.6, 4.2-5.0)	(4.8, 4.5-5.4)	(5.0, 4.5-5.6)	(5.2, 4.9-5.4)		
HGB (g/dL)	14.9 ± 1.5	13.8 ± 1.3	13.7 ± 1.5	14.4 ± 1.3	15.2 ± 1.2	0.001	0.402
	(14.8, 13.9-16.3)	(13.6, 13.1-15.3)	(13.8, 12.2-14.5)	(14.1, 13.5-15.6)	(15.4, 14.4-16.0)		
HCT (%)	44.0 ± 4.2	41.6 ± 3.7	41.0 ± 3.4	43.3 ± 3.7	45.2 ± 3.0	< 0.0001	0.174
	(43.7, 40.7-47.7)	(41.3, 38.8-45.3)	(40.7, 39.0-42.9)	(42.9, 40.8-45.6)	(45.8, 43.6-47.2)		
MCHC (g/dL)	33.8 ± 0.7	33.3 ± 0.7	33.2 ± 1.2	33.3 ± 0.9	33.6 ± 1.0	0.433	0.415
	(33.8, 33.3-34.3)	(33.4, 32.5-33.9)	(33.4, 32.15-34.33)	(33.0, 32.7-34.1)	(33.6, 33.1-34.2)		
MCH (pg)	30.4 ± 2.4	29.9 ± 1.4	28.1 ± 3.6	28.9 ± 3.0	29.3 ± 2.9	0.121	0.044
	(30.7, 30.1-31.5)	(29.8, 28.5-31.4)	(29.8, 26.9-30.1)	(30.0, 28.4-30.5)	(30.1, 28.9-30.9)		
MCV (fl)	89.7 ± 6.5	89.9 ± 3 .2	84.4 ± 9.2	86.6 ± 8.3	87.2 ± 7.6	0.199	0.049
	(91.7, 89.1-92.8)	(89.3, 86.7-93.3)	(89.2, 80.2-90.0)	(89.8, 82.8-92.3)	(88.6, 85.5-91.4)		
PLT (10 ³ /uL)	212.1 ± 46.0	221.1 ± 47.5	276.9 ± 67.7	250.3 ± 70.4	233.0 ± 48.8	0.055	0.131
	(206.0, 182.0-248.5)	(205.5, 179.8-262.5)	(289.0, 234.5-318.5)	(249.0, 196.8-273.3)	(232.0, 196.5-268.5)		
			N	(%)			
Abdominal echo							
Nephrectomy	0	0	0	1 (10.0)	1 (1.0)	-	-
Gall stone	0	0	0	0	9 (9.0)	-	-
Renal stone	0	1 (12.5)	0	1 (10.0)	10 (10.0)	-	-
Urine routine							

Strip-GLU						0.826	0.546
Normal	13 (81.3)	7 (87.5)	9 (90.0)	9 (90.0)	97 (92.4)		
Abnormal	1 (6.3)	0	0	0	5 (4.8)		
Miss	2 (12.5)	1 (12.5)	1 (10.0)	1 (10.0)	3 (2.9)		
Strip-BIL						0.005	-
Normal	14 (87.5)	7 (87.5)	8 (80.0)	9 (90.0)	102 (97.1)		
Abnormal	0	0	1 (10.0)	0	0		
Miss	2 (12.5)	1 (12.5)	1 (10.0)	1 (10.0)	3 (2.9)		
Strip-KET						0.542	0.346
Normal	12 (75.0)	7 (87.5)	9 (90.0)	9 (90.0)	94 (89.5)		
Abnormal	2 (12.5)	0	0	0	8 (7.6)		
Miss	2 (12.5)	1 (12.5)	1 (10.0)	1 (10.0)	3 (2.9)		
Strip-SG						0.399	0.248
Normal	12 (75.0)	6 (75.0)	8 (80.0)	7 (70.0)	96 (91.4)		
Abnormal	2 (12.5)	1 (12.5)	1 (10.0)	2 (20.0)	6 (5.7)		
Miss	2 (12.5)	1 (12.5)	1 (10.0)	1 (10.0)	3 (2.9)		
Strip-OB						0.830	0.637
Normal	12 (75.0)	6 (75.0)	8 (80.0)	7 (70.0)	92 (87.6)		
Abnormal	2 (12.5)	1 (12.5)	1 (10.0)	2 (20.0)	10 (9.5)		
Miss	2 (12.5)	1 (12.5)	1 (10.0)	1 (10.0)	3 (2.9)		
Strip-PH						-	-
Normal	14 (87.5)	7 (87.5)	9 (90.0)	9 (90.0)	102 (97.1)		
Abnormal	0	0	0	0	0		
Miss	2 (12.5)	1 (12.5)	1 (10.0)	1 (10.0)	3 (2.9)		
Strip-PRO						0.538	0.302

Normal	9 (56.3)	6 (75.0)	8 (80.0)	8 (80.0)	81 (77.1)		
Abnormal	5 (31.3)	1 (12.5)	1 (10.0)	1 (10.0)	21 (21.0)		
Miss	2 (12.5)	1 (12.5)	1 (10.0)	1 (10.0)	3 (2.9)		
Strip-URO						0.883	1
Normal	14 (87.5)	7 (87.5)	9 (90.0)	9 (90.0)	99 (94.3)		
Abnormal	0	0	0	0	3 (2.9)		
Miss	2 (12.5)	1 (12.5)	1 (10.0)	1 (10.0)	3 (2.9)		
Strip-NIT						0.005	-
Normal	14 (87.5)	7 (87.5)	9 (90.0)	8 (80.0)	102 (97.1)		
Abnormal	0	0	0	1 (10.0)	0		
Miss	2 (12.5)	1 (12.5)	1 (10.0)	1 (10.0)	3 (2.9)		
Strip-WBC						< 0.0001	1
Normal	14 (87.5)	5 (62.5)	5 (50.0)	5 (50.0)	99 (94.3)		
Abnormal	0	2 (25.0)	4 (40.0)	4 (40.0)	3 (2.9)		
Miss	2 (12.5)	1 (12.5)	1 (10.0)	1 (10.0)	3 (2.9)		

Abbreviation: SD = Standard deviation; IQR = interquarter range.

^aKruskal-Wallis test or Chi-square test. ^bWilcoxon rank sum test or Fisher's exact test.

Supplemental Table 8. Relationship of urinary biomarkers of renal injury with urinary melamine levels or work sites after adjusting for hypertension in multiple linear regression models.

				Adjusted ^c		
Log ₁₀ NAG ^a	Ν	Mean ± SD	Median, IQR	β (SE)	p-value	
Model1						
Urinary melamine (µg/mmol Cr)	81	0.7 ± 1.5	0.5, 0.3-0.8	0.004 (0.001)	0.0003	
Hypertension (mmHg)	01	0.7 = 1.0	0.0, 0.0 0.0		0.0000	
Normal	61	0.6 ± 0.4	0.5, 0.3-0.8	1	-	
Abnormal (>140/90)	20	1.2 ± 3.0	0.5, 0.4-0.7	0.169 (0.076)	0.029	
Model2 ^d						
Non-exposed workers	105	0.4 ± 0.2	0.4, 0.3-0.5	1	-	
Administrators	9	0.6 ± 0.3	0.6, 0.4-0.8	0.162 (0.103)	0.119	
Grinders & packers	16	0.7 ± 0.6	0.7, 0.3-0.9	0.103 (0.093)	0.272	
Manufacturers	14	1.8 ± 3.5	0.9, 0.4-1.4	0.234 (0.102)	0.023 ^e	
Hypertension (mmHg)						
Normal	108	0.5 ± 0.4	0.4, 0.3-0.7	1	-	
Abnormal (>140/90)	36	0.9 ± 2.3	0.5, 0.3-0.6	0.157 (0.054)	0.004	
Log ₁₀ Microalbumin ^a						
Model1						
Urinary melamine (µg/mmol Cr)	81	3.3 ± 20.5	0.5, 0.4-1.0	0.003 (0.001)	0.063	
Hypertension (mmHg)	-			(,		
Normal	61	0.9 ± 1.4	0.5, 0.4-0.8	1	-	
Abnormal (>140/90)	20	10.3 ± 41.2	0.6, 0.4-1.3	0.273 (0.110)	0.016	
Model2						
Non-exposed workers	105	1.9 ± 6.8	0.6, 0.4-0.9	1	-	
Administrators	9	1.5 ± 2.7	0.4, 0.3-0.6	-0.153 (0.178)	0.389	
Grinders & packers	16	0.9 ± 0.5	0.6, 0.4-1.5	-0.161 (0.161)	0.320	
Manufacturers	14	14.8 ± 49.2	0.8, 0.4-1.1	0.048 (0.176)	0.784	
Hypertension (mmHg)						
Normal	108	0.9 ± 1.4	0.6, 0.4-0.9	1	-	
Abnormal (>140/90)	36	9.4 ± 32.2	0.6, 0.5-1.6	0.304 (0.093)	0.001	
,		Normal	Abnormal	Adjusted	IOR	
β2-Microglobulin ^a	Ν	N (%)	N (%)	(95%C		
Model1						
Urinary melamine (µg/mmol Cr)	81	75 (92.6)	6 (7.4)	1.03 (1.01	-1.06)	
Hypertension (mmHg)			- ()	1.00 (1.01	,	
Normal	61	56 (74.7)	5 (83.3)	1		
Abnormal (>140/90)	20	19 (25.3)	1 (16.7)	0.24 (0.01	-8.20)	
			- (- 0)	5.2 . (0.01	,	
Model2 ^d Non-exposed workers	105	101 (96.2)	4 (3.8)	1		
Administrators	105 9	9 (100.0)	4 (5.8)	1		
		9 (100.0) 15 (93.8)	0 1 (6.2)	0.73 (0.04-	15 27)	
Grinders & packers Manufacturers	16 14	15 (93.8) 10 (71.4)	4 (28.6)	· ·	,	
Hypertension (mmHg)	14	10(/1.4)	4 (20.0)	26.39 (1.09-	030.77)	
Normal	108	101 (74.8)	7 (77.8)	1		
Abnormal (>140/90)	36	34 (25.2)	2 (22.2)	0.87 (0.82	-1 52)	
Abbreviation: BMI – Body m						

Abbreviation: BMI = Body mass index; Cr = creatinine; NAG = N-acetyl-beta-D-glucosaminidase; OR = odds ratio. ^aMultiple linear regression or logistic regression. ^cAdjusting for age, sex, BMI, educational level, cigarette smoking, and serum uric acid.

^dMissing data, N = 1 for office staff, 2 for grinders & packers, and 2 for manufacturers.

Study	Subjects/Source	Exposure assessment	Ambie nt F/M ^a	Main results
Case report or			17111	
case series				
Srivastava et	Six male workers who were	Measure urinary	-/-	1. Range of urinary formic acid was
al., 1992 [India] ⁸	employed for 3-10 years in the	formic acid, one metabolite of		13.5-173.0 mg/1 (n = 6).
[India]	preparation of melamine resin from melamine formaldehyde in a paper	formaldehyde		2. 4/6 of the subjects had low values of hemoglobin (< 14g%) and 3/6 had raised total
	mill.	Tormataenyae		lymphocyte counts (>3200).
Aalto-Korte et	1. Plywood industry (A 26-year-old	-	-/-	Allergic contact dermatitis
al., 2003	man)			(Formaldehyde-negative)
[Finland] ⁹	2. Production of			
	melamine-laminated chipboard (A			
	38-year-old female)3. Laboratory of analysis and			
	production of resins (A 38-year-old			
	female)			
Garcia Gavin et	Plywood worker in the melamine	-	-/-	Contact allergic dermatitis (patch-test: positive
al., 2008	paper impregnation line (A			to melamine formaldehyde resins but negative
[Spain] ¹⁰	28-year-old female)			to formaldehyde)
Epidemiologic st				
Niemela & Vainio, 1981	Melamine-formaldehyde plastic in electrical machinery	Monitor ambient	+/-	Formaldehyde concentrations in air: $0.25-0.63 \text{ mg/m}^3$ (n = 8)
[Finland] ¹¹	electrical machinery	formaldehyde		0.23-0.03 mg/m (n - 8)
[i iiituita]	Urea and melamine resins in	concentrations		$0.13-6.13 \text{ mg/m}^3$ (n = 220)
	particle board plants	in workplaces		
Marsh et al.,	Study 20,067 white male workers	Questionnaire	-/-	Lung cancer mortality
1992 [PA,	exposed to formaldehyde in the			Significant positive associations were found
USA] ¹²	presence of 12 selected co-exposures, including melamine			between the risk of lung cancer and cumulative exposure to formaldehyde in the presence of
	exposure			several co-exposures, including melamine
	en postar e			(estimated RR=1.59 with over 1.5ppm-yr,
				p=0.04).
Isaksson et al.,	88 workers, employed for 4-6	Questionnaire	-/-	Occupational dermatoses
1999	years, worked in the composite			1. 10.2% (9/88) diagnosed with occupational
[Sweden] ¹³	production with the use of cellulose fibers and melamine-formaldehyde			dermatoses 2. 5 workers had contact allergy to
	resins			melamine-formaldehyde resin
Lazarov. 2004	644 contact dermatitis patients	-	-/-	83 (12.9%) had an allergic reaction to textile
[Israel] ¹⁴	suspected exposed to textile			dyes and melamine formaldehyde resins.
Neghab et al.,	70 workers employed for 13.2±7.8	Monitor	+/-	Respiratory morbidity
2011 [Iran] ¹⁵	years, and 24 controls employed for	ambient		1. Area formaldehyde: 0.78 ± 0.4 ppm ^b for 7
	14.5 ± 8.1 years in a malamina formal dahuda rasin	formaldehyde		workshops and ND for 1 office areas
	melamine-formaldehyde resin producing plant	concentrations in workplaces		2. Exposed group had higher frequency of respiratory symptoms.
	producing plant	in workplaces		3. Pulmonary function was significant
				decrements in preshift and postshift of exposed
				group.
Wu et al., 2014	44 exposed workers in melamine	1. Monitor	+/+	Renal function impairment
[Taiwan in our	tableware manufacturing factories	ambient		1. Area formaldehyde: $107.1\pm14.7\mu$ g/m ³ in
study]	and 105 controls	formaldehyde		manufacturing area (n=18) and 23.7 \pm 4.7 μ g/m ³
		concentrations in workplaces		in office area (n=9) Area melamine: $16.5\pm5.4\mu g/m^3$ in
		in workplaces		manufacturing area (n=18) and $0.6\pm0.2\mu$ g/m ³ in
		2. Monitor		office area (n=8)

Supplemental Table 9. Summary of literature data about industry of melamine-formaldehyde resin related to occupational melamine exposure.

personal formaldehyde concentrations in workplaces	 Personal formaldehyde: 207.2±7.2µg/m³ in manufacturing area (n=19) Personal melamine: 97.3±31.4µg/m³ in manufacturing area (n=18) Manufacturers had the highest NAG levels and the highest detectable β2-MG than controls, but not found in urinary microalbumin.
^a F: ambient formaldehyde measurement; M: ambient melamine measurement	

^bExceeded current permissible levels (0.3ppm) in Iran, 1ppm=1.2 mg/m³.

Study / study	Subjects	Analytic methods	Markers for		Results					
time			renal damages in urine	Study groups	Melamine concentrations without creatinine correction (ng/ml)	Melamine concentrations with creatinine correction (µg/mmol Cr)	% of < LOQ/MDL	Outcome of renal injuries		
	From 2008 melamine incident									
Lam et al., 2009 [Hong Kong, China] ¹⁶	14 cases (urinary stones) 20 controls (non-stones) (Aged < 3 yrs)	LC-MS/MS (SPE) MDL: not available	Protein, microalbumin, β2-MG	Cases	-	21 ^a (0.87-2002)	0	2/11 cases and no controls with detectable β2-MG		
2008/9	All with a confirmed history of consuming melamine-tainted milk			Controls	-	6.6 ^a (0.08-37)	0			
Cheng et al., 2009 [Taipei, Taiwan] ¹⁷	10 nephrolithiasis 20 matched-controls	UPLC-MS/MS (SPE)	-	Cases	(30-300)	(9-71) ^b	70	-		
2008/9	(Aged 2-9 yrs)	LOQ: 10 ppb MDL: 6 ppb		Controls	- (20)	(2.3-2.6) ^b	90			
Zhang et al., 2010 [Shanghai, China] ¹⁸ After 2008/9	86 children suspected to have ingested melamine-tainted powdered formula (Aged 0-8 yrs)	LC-MS/MS (LLE) LOQ: 10 ppb	-		<10 (17.4%) 10-100 (46.5%) 100-1000 (17.4%) 1000-10000 (16.3%) > 10000 (2.3%)	-	-	-		
Gao et al., 2011 [Shanghai, china] ¹⁹	96 children with melamine-tainted milk associated urolithiasis: Baseline & follow-up at 6 months (Aged ≤ 6 yrs)	-	Microalbumin, immunoglobulin G, NAG		-	-	-	Detection rate of abnormal urinary microprotein excretion: 54.2% in children with persistent stones, <i>vs.</i> 38.2% in children who passed their stones		
Urolithiasis in adu	lts									
Wu et al., 2010 [Kaoshiung,	11 uric acid stones 21 calcium stones	LC-MS/MS (SPE) LOQ: 2 ppb	-	Uric acid stones	3.5	0.5	36.4	-		
Taiwan] ⁴	22 matched-controls (Aged 36-69 yrs)	MDL: 0.4 ppb		Calcium stones	1.02	0.14	38.1			
2003-2007				Controls	0.4	0.06	68.2	•		

Supplemental Table 10. Summary of urinary melamine concentration variations in different populat	ulations from the literature.
--	-------------------------------

Liu et al., 2011 [Kaohsiung, Taiwan] ²⁰	211 calcium stones 211 matched-controls	LC-MS/MS (SPE) LOQ: 1 ppb	-	Calcium stones	0.9	0.21	37.9	-
Taiwanj	(Aged 22-85 yrs)	MDL: 0.2 ppb		Controls	0.2	0.02	79.6	
2003-2007								
General populatio	n							
Zhang et al., 2010 [Shanghai, China] ¹⁸ After 2008/9	110 adults (Aged 25-75 yrs) for health examination after the 2008 melamine incident	LC-MS/MS (LLE) LOQ: 10 ppb	-		<10 (12.7%) 10-100 (69.1%) 100-1000 (13.6%) 1000-10000 (4.5%) >10000 (0%)	-	-	-
Kong et al., 2011 [Hong Kong, China] ²¹ 2007-2008	502 school children (Aged 6-20 yrs)	LC-MS/MS LOQ: 5 ppb	Albumin		-	0.8 (ND-1467)	42.0	High melamine exposure (> 7.1 µg/mmol Cr) not associated with high excretion of albumin in urine
Panuwet et al., 2012 [Georgia, USA] ²²	492 general US adults	LC-MS/MS (SPE) Method LOD: 0.66 ppb	-		GM 2.37 (ND-161)	-	24.0	-
Not available								
Lin et al., 2013 [Kaohsiung,	22 school children (median age 8.0 yrs) and their parents	LC-MS/MS (SPE) LOQ: 2 ppb	NAG, β2-MG, microalbumin	Children	7.20-9.42	0.93-1.73	0	No associations between melamine
Taiwan] ⁵	(n = 44, median age 40 yrs)	MDL: 0.4 ppb		Mothers Fathers	4.49-6.53 4.91-5.11	0.87-1.21 0.84-0.87	2.9	exposure and urinary NAG and microalbumin
Wu et al., 2013 [Kaohsiung,	12 volunteers (Aged 20-27 yrs)	_	-	Melamine 0 hr	9.41	0.98	0	_
Taiwan] ²³	Cross-over study design 6/6 melamine tableware			6 hr	26.89	5.59	-	
2011/12	6/6 ceramic tableware			Ceramic 0 hr	11.40	1.02	33.0	
				6 hr	1.26	0.25	-	
Occupational wor	kers							
Our study [Kaohsiung,	Two melamine tableware manufacturing factories	LC-MS/MS (SPE) LOQ: 2 ppb	NAG, β2-MG, microalbumin	Manufact urers	943.0	80.5	0	Urinary melamine levels were
Taiwan] 2012/8-12	(Aged 25-57 yrs) 44 exposed workers, including	MDL: 0.4 ppb		Grinders	206.3	16.2	0	<u>significantly and</u> <u>positively</u> associated with NAG levels and the detectable rate of
	16 manufacturers 8 grinders			Packers	252.6	15.9	0	β2-MG

10 packers 10 administrators	Administr ators	18.2	1.9	0
105 non-exposed workers from one shipbuilding company as controls (Aged 21-63 yrs)	Controls	4.3	0.3	7.1

Value represent as Median (range).

Abbreviation: Cr = Creatinine; LOQ = the lower limit of quantitation; MDL = the method detection limit; LC-MS/MS = liquid chromatography tandem mass spectrometry;

SPE = solid-phase extraction; UPLC-MS/MS = ultra performance liquid chromatography tandem mass spectrometry; LLE = liquid-liquid extraction; β 2-MG = beta 2-microglobulin; NAG = N-acetyl- β -glucosaminidase; ND = non detectable; GM = geometric mean.

^aUrine samples collected at least 10 days of stopping the consumption of melamine-tainted milk products (Lam et al., 2009)¹⁶. ^bUrine samples collected at first visit or 1 week later (Cheng et al., 2009).¹⁷